FAQ #8 Como ver se a transformação gênica deu certo?

FAQ-da-Bioengenharia-8

Já colocamos nossos plasmídeos nos bichinhos, mas ainda não acabou. Essa é a hora de saber se tudo que fizemos até aqui deu certo!

Primeiro, colocamos eles na placa de seleção com antibiótico e só aqueles que realmente incorporaram o plasmídeo vão sobreviver porque ganharam um gene amigo de resistêcia ao antibiótico. Agora pegamos uma parte das células sobreviventes e fazemos um teste usando a PCR (você lembra dessa técnica, né?).
Como testar com a PCR?! Roubamos os plasmídeos dessas células e tentamos multiplicar o pedaço de DNA que foi grudado nele adicionando primers, nucleotídeos e enzimas sob aquecimento e desaquecimento. Se o nosso plasmídeo modificado tiver sido incorporado pelos micro-organismos haverá a multiplicação do pedacinho e podemos vê-los em uma eletroforese. Caso contrário, nada foi copiado e nada vai aparecer na eletroforese, certo?! Então temos o sinal de que alguma coisa não deu certo por aqui e as chances de erros deste teste são bem pequenas.

Depois vamos para um teste melhor ainda, o sequenciamento. Este teste diz exatamente qual é a sequência de pares de base da molécula do plasmídeo e acabam de vez suas dúvidas se a transformação deu certo ou não! O sequenciamento começa parecendo um processo de duplicação normal de DNA. Mas além de cadeias molde, enzimas e nucleotídeos normais, há nucleotídeos especiais sintetizados (ddNTP’s) que possuem duas boas propriedades: emitem luz e interrompem o prologamento da cadeia a partir de onde foram adicionados. Então, imagine uma molécula de DNA que possui um par de base “A”-“T” em um determinado comprimento e considere que a base “A” pertence à cadeia molde e a base “T” à cadeia complementar (como o par nº 2 em vermelho da figura abaixo, feita com todo carinho no Power Point para vocês). Se esta base “T” for um nucleotídeo especial temos como identificar “quem é” e “qual sua posição” na cadeia, pois ele emitirá uma cor específica para Timina e o comprimento da cadeia complementar está interrompido em sua posição exata (nº 2 em verde).

Sequenciamento de DNA

Podemos detectar a cor emitida através de um espectrógrafo e a posição pela eletroforese em gel (o sequenciador é basicamente a união dos dois). Ou detectar o tipo de nucleotídeo como no método de Sanger, apenas colocando os filamentos marcados por cada tipo de nucleotídeo em poços diferentes do gel e interpretando a sequência a olho nu/manualmente. Depois de identificado o nucleotídeo da cadeia complementar é possível saber quem ocupa a mesma posição na cadeia molde, no caso citado é a base Adenina. Expanda esse raciocínio para todas as outras bases da molécula, com uma amostra grande teremos cadeias de todos os comprimentos possíveis, interrompidas por um dos 4 tipos de nucleotídeos especiais (A, T, C, G). Assim é possível sequenciar toda a molécula de DNA!

Para saber mais sobre sequenciamento genético, clique aqui.

Por Otto Heringer e Viviane Siratuti.

 

FAQ #7 Como enfiar o plasmídeo nas células?

FAQ-da-Bioengenharia-7

Dar e receber plasmídeos não é nenhuma novidade para algumas células!

As bactérias costumam trocar informações genéticas assim e esse processo é chamado de conjugação, portanto elas já possuem toda maquinaria necessária pra isso! Desse jeito elas aumentam muito a variabilidade e as chances de sobrevivência da população.

Podemos usar esse mecanismo natural  para enfiar os plasmídeos, mas na maioria das vezes damos uma ajudinha usando choques térmicos ou elétricos.


Para entender o choque térmico, assista o vídeo do JOVE aqui. E do choque elétrico, aqui.

Por Otto Heringer e Viviane Siratuti.

 

FAQ #6 Como ver se nossos plasmídeos incorporaram os pedacinhos de DNA?

FAQ da Bioengenharia 6

Sabendo o tamanho do plasmídeo e dos pedacinhos estimamos um tamanho para nosso novo plasmídeo e agora é só conferir se estão como esperado!

Para isso, existe uma técnica de separação chamada eletroforese em gel, onde as moléculas são “peneiradas” por algum polímero (gel de poliacrilamida ou de agarose) quando se movimentam atraídas ou repulsadas pelos eletrodos de cargas opostas que são colocados nas extremidades do gel. Ou seja, uma molécula com carga negativa caminha para o eletrodo de carga positiva e vice-versa. E as moléculas de mesma carga correm de maneiras diferentes pelo gel de acordo com seus pesos moleculares e tamanhos, as menores e mais “leves” passam com mais facilidade pelo gel enquanto as maiores e mais “pesadas” ficam mais retidas. No final, temos as moléculas separadas ao longo do gel e podemos comparar com a ladder (uma “régua” feita de moléculas com pesos e tamanhos já conhecidos) para saber se nossos plasmídeos estão no tamanho esperado.

 

 

 

 

 

 

 

 

 

 

 

 

Depois de confirmar pela eletroforese que nossos plasmídeos foram modificados, precisamos “salvá-los” do gel para colocar nas células. Basicamente, cortamos o pedaço de gel que está com nossos plasmídeos e colocamos em tubinhos com uma pequena coluna de sílica dentro (imagem aí embaixo). Então as moléculas de DNA se ligam à coluna, fazemos uma lavagem para tirar o gel e depois diluímos o DNA para retirá-lo da coluna!

 

Para saber mais sobre eletroforese, assista o vídeo do JOVE Science aqui e purificação aqui. 🙂

Por Otto Heringer e Viviane Siratuti.

FAQ #5 Como colocar os pedaços de DNA no plasmídeo?

Exibindo FAQ da Bioengenharia 5.png

Para abrir os plasmídeos (lembrando que é um DNA circular) e depois grudar os pedacinhos de DNA que extraímos pela Miniprep e multiplicamos pela PCR, usamos as chamadas enzimas de restrição e de ligação. Isso tudo ainda fora das células, ok?!

As enzimas de restrição reconhecem e cortam os plasmídeos em regiões específicas que queremos, isto é, cortam em determinadas sequências de pares de base. Inclusive existem dois tipos de corte, podendo formar extremidades coesivas (cortes em comprimentos diferentes entre as duas fitas) ou cegas (corte reto na dupla fita).

Feito isso, agora usamos as enzimas de ligação para grudar as extremidades dos plasmídeos às extremidades dos pedacinhos, onde as bases se complementam.

 

Legal saber também que o nome dessas enzimas estão sempre relacionados com os nomes dos organismos onde elas foram encontradas (veja a enzima EcoRI, por exemplo).

Para assistir o vídeo do JOVE Science sobre enzimas de restrição, clique aqui. E enzimas de ligação, aqui.

FAQ #4 Onde colocar esses pedaços de DNA?

FAQ da Bioengenharia 4

“No genoma, né, dêr!”. Certo, mas como? E será que o genoma é o único lugar que podemos colocar esse novo pedacinho de DNA no micro-organismo que queremos modificar? Não! Existe outro lugar também e ele se chama plasmídeo (quem já jogou BioShock vai soltar umas sinapses a mais agora).

 O plasmídeo é um DNA circular presente em várias espécies de seres vivos e é responsável por conter informações valiosas envolvendo a sobrevivência do organismo a fatores externos (como por exemplo sua resistência a um antibiótico), além de ser o principal ator da transferência horizontal de informação genética, ou seja, a passagem de um DNA funcional de um ser vivo para outro sem haver hereditariedade (é aí que o jogo BioShock extrapola isso para seres humanos). Adivinha de onde veio a ideia de usar o plasmídeo como transmissor – “vetor” – de informação genética para modificar as células? Veio exatamente desse mecanismo natural de realizar transferência horizontal de genes que vários micro-organismos possuem. Aproveitamos isso para fazer a transferência das informações genéticas que nós queremos!

E se vamos usar plasmídeos é preciso extraí-los também! Os plasmídeos são moléculas de DNA assim como os pedacinhos obtidos a partir do genoma e multiplicados pela PCR que vamos introduzir no micro-organismo, mas agora vale ressaltar que na extração de DNA há uma etapa importante onde é feita a separação do conteúdo plasmidial do genômico.

O vídeozinho abaixo tem uma animação no ínicio e depois mostra o procedimento em lab do isolamento do plasmídeo 🙂

Por Otto Heringer e Viviane Siratuti.

FAQ #3 Como copiar o código em laboratório?

Exibindo FAQ da Bioengenharia 3.png

Ahá! Essa é a pergunta que mudou a biotecnologia. Até conseguirmos fazer isso, nós (i.e. humanidade) passamos por um caminho bem interessante envolvendo prêmios nobel e momentos epifânicos. O videozinho abaixo explica muito melhor do que esse texto corrido como funciona a metodologia pra se fazer isso, a Reação em Cadeia da Polimerase (Polimerase Chain Reaction), o tão amado e odiado (quando simplesmente não funciona) PCR!

Encurtando a história: usando uma enzima que trabalha “sentando” no molde de uma fita única de DNA, aquecimento e desaquecimento (para “ligar” e “desligar” essa enzima) e pedacinhos de nucleotídeo, conseguimos fazer milhões de cópias de apenas uma única molécula de DNA – é por isso que o pessoal do CSI (o seriado) consegue uma grande informação genética usando apenas resíduos quase desprezíveis de material biológico.

 

Por Otto Heringer e Viviane Siratuti.

FAQ #2 Como extrair um pedaço de DNA desejado?

FAQ da Bioengenharia 2.png

Queremos pegar um pedacinho codificante de DNA (responsável por alguma característica no organismo) de um outro pedaço maior de DNA. OK, mas onde fica esse outro pedaço? Bem, existem pedaços disso praticamente a todo o seu redor. Onde há vida, há informação genética que pode ser “pega”.Extraímos ele basicamente fazemos lavagens usando solventes de diferentes “afinidades de dissolução” (a grosso modo) com as biomoléculas da célula até restar o DNA.

Se você quer saber, existem até kits comerciais para se fazer isso (como por exemplo a imagem abaixo), são os famigerados “kits de miniprep”. “Mini” porque em geral são bastante usados kits que trabalham com pequenos volumes (microlitros), mas também existem os kits de “midiprep” e “maxiprep”, para volumes maiores.

Assista o vídeo caso você queira saber mais do processo (aviso: a realidade às vezes não é algo tão excitante como você imaginava). 

Aliás, se você ficou com vontade de extrair DNA em casa (haha), é bem simples, clique aqui.

FAQs da Bioengenharia – Introdução

unnamed

Preocupados com os novos amantes da biologia sintética, estamos procurando materiais de introdução no assunto e encontramos algumas coisas interessantes! 🙂

Por isso vamos colocar uma sequência de posts explicativos, partindo de uma visão geral e seguindo por perguntas mais específicas. É um pequeno tutorial-FAQ sobre alguns fundamentos que quando entendidos ajudam bastante a entender algumas de nossas discussões e outros posts. Serve para ajudar principalmente quem não é da área de biológicas ou quem ainda não se aprofundou muito neste assunto! Se continuarem com dúvidas, perguntem tá?!

Lembrem-se de ativar as legendas dos vídeos, caso necessitem! Todos possuem legendas originais em inglês e alguns em português. Você pode colocá-las traduzidas quando só houver em inglês (não muito recomendado, rs). Nos vídeos do JOVI existe a opção de colocar os textos em português. Se você não sabia que o YouTube fazia isso por você, dá uma olhada aqui (dica: barrinha inferior do vídeo).

Antes de mais nada, você sabe o que são e quais as relações entre nossas principais moléculas orgânicas (DNA, RNA e proteínas), certo? Se sua resposta é não, assista um desses vídeos!

Indo além da Estrutura 

OK, agora vamos além desses conceitos básicos dos vídeos. Mais que entender a estrutura e a dinâmica dessas biomóleculas, como os cientistas a alteram? Em linhas gerais, como se faz para modificar geneticamente um organismo?

Vamos lá! Primeiro pegamos um pedacinho codificante de DNA (gene) de outro organismo que tenha certa característica que desejamos. Para isso, extraímos o DNA e depois multiplicamos só este pedaço que nos interessa através de uma técnica chamada PCR (afinal, a eficiência das transformações é pequena e quanto mais material melhor). Precisamos também extrair e abrir os plasmídeos (DNA circular) do organismo escolhido para receber este gene e assim receber as novas características (já que o plasmídeo é nosso principal veículo de introdução dos genes nas células). Para abrir estes plasmídeos usamos enzimas de restrição que cortam as moléculas de DNA em lugares específicos e chamamos isso de digestão. Depois que tivermos vários plasmídeos e genes, podemos grudá-los com a ajuda de enzimas de ligação. E então, para saber se nosso novo plasmídeo deu certo usamos uma técnica de separação por carga e tamanho de molécula, a eletroforese em gel. Nela, as moléculas se acumulam em certas posições que nos dizem seus tamanhos (mergulhadas em um polímero) e assim podemos identificar aquelas que correspondem ao que estimamos. Além disso, fazemos testes com a técnica PCR e o sequenciamento genético. Se os testes disserem que tudo que fizemos deu certo, recuperamos o material e colocamos nossos novos plasmídeos nos organismos, geralmente utilizando choque térmico ou elétrico. Esse passo, introdução de plasmídeos, é a chamada transformação. Mas para selecionarmos somente aqueles organismos que realmente foram transformados usamos antibióticos que eliminam as células que não ganharam os nossos novos plasmídeos, já que não possuem os genes de resistência que foram colocados neles. E no final, cada célula que sobreviveu se multiplicará, formando colônias de organismos geneticamente modificados. Agora dá uma olhada no esquema de novo e vê se entendeu até aqui!

Um jogo para acabar com preconceitos

Qual é a melhor maneira de passar uma informação pra uma pessoa!?

Como os comerciais, filmes e canais de televisão estão aí pra comprovar, o entretenimento passa muito mais pra você do que mera diversão. É com essa ideia que ficamos pensando em como fazer as pessoas entenderem os conceitos e finalidades da abordagem da Biologia Sintética. Como não perdemos tempo para arrumar uma desculpa para nos divertir, criamos durante esse ano um jogo de cartas – inspirado em elementos de MunchkinBohnanzaMagic e War – para, além de ensinar de uma maneira divertida sobre conceitos de microbiologia e biologia molecular, informar melhor as pessoas e acabar com certos preconceitos envolvendo microrganismos bioengenheirados.

E olha que legal: além de levarmos essa ideia como nossa Human Practices na competição internacional de máquinas geneticamente modificadas desse ano (e sermos bastante elogiados por esse trabalho), emplacamos primeiro lugar com o projeto na Olimpíada USP do Conhecimento!

primeiro lugar USP Conhecimento

É, senhora Sociedade, eu te disse que nossa brincadeira é uma brincadeira séria! Tão séria que esse projeto não para aqui.

Game Crafter

O jogo estará disponível para download (se você quiser imprimir aí na sua casa) ou para compra através do maravilhoso site “The Game Crafter“, que é de uma empresa que imprime e vende jogos independentes, como o nosso. Desse jeito nosso jogo vai poder sempre fazer o que ele se propõe a fazer: ser jogado!

O jogo

O jogo funciona assim: cada jogador (até 4) escolhe uma carta de personagem personagem, como por exemplo o professor Fujita:

Senhor Fujita

Como dá pra ver, cada pesquisador tem uma personalidade específica e um chassi com que desenvolve seus projetos. No caso o senhor Fujita é um pesquisador que não colabora muito mas bastante competente, trabalhando com a largamente usada Escherichia coli.

O grande objetivo do jogo é construir primeiro que o seu colega um circuito gênico – afinal estamos falando de academia, minha gente! Para construir o circuito o jogador deve “criar”, acumular e trocar BioBricks, até que tenha a combinação de Biobricks necessários para completar o circuito, como por exemplo esse:

Carta Objetivo

Os Biobricks podem ser baixados com “pontos de metabolismo”, que é a representação dos recursos metabólicos e energéticos que o microrganismo tem para passar com sucesso pelo processo de transformação gênica de cada parte, a ser inserida sequencialmente na célula (no exemplo anterior há 8 BioBricks).

A dinâmica das cartas se dá quando elas ainda estão na sua mão e não foram “baixadas” no organismo. Há também (no melhor estilo Munchkin – quem já jogou sabe do que estou falando!) cartas dinâmicas usadas por um jogador em si mesmo ou em outros jogadores, como essa abaixo:

Carta dinâmica

E, por último, o último elemento do jogo é a tão temida aleatoriedade! Aquelas variáveis sem controle que sempre fazem seu experimento não sair como você queria. Um jogador no final da rodada joga um dado: dependendo do número tirado uma “carta aleatória” surge, ajudando ou prejudicando o ganho de pontos de metabolismo (que ocorre por rodada) dos chassis de cada pesquisador.

Cartas Aleatórias

Fizemos um overview do projeto num vídeo do youtube, dê uma olhada:


Quando o nosso novo site ficar pronto vamos ter um endereço especial com o jogo, por enquanto fica aqui nossa promessa de acesso aberto a esse conteúdo. 🙂

Acontece nos filmes, acontece na vida, acontece no Clube de Biologia Sintética

Este é mais um projeto que surgiu das reuniões do Clube de Biologia Sintética, feito por pessoas das mais diversas áreas e que se conheceram no clube. Esse é o objetivo principal do grupo: Reunir e ensinar pessoas de maneira divertida , integrar áreas, criar projetos científicos inovadores e criativos e, por fim, gerar impactos positivos na sociedade.

Você que compartilha dos nossos ideais, acompanhe nossas reuniões pessoalmente ou pelo ao vivo pelo streaming no nosso canal do youtube, ou ainda entre em contato pelo nosso email, canal do facebook e twitter!

Brincando de Comparar Códons

Sou daquelas pessoas que simplesmente não conseguem dormir direito com um mistério. Essa é uma obsessão que provavelmente muitos cientisas (e “wannabe scientists”, como eu) têm. Às vezes ficamos obcecados com uma coisa muito importante, às vezes com uma coisa banal e muitas vezes com algo que você nunca parou para pensar direito. O mais emocionante é que qualquer resposta de uma dúvida tem aquela probabilidade mágica de revelar algo impressionante ou bem útil. Hoje (dia dessa postagem), fiquei obcecado por tentar entender “na prática” qual é a grande ideia da otimização de códons e o quanto os organismos podem ter preferências de códons diferentes.  Aqui está o registro da investigação do pequeno mistério de hoje!

Códons, Otimizações e Preferências

Antes de discorrer sobre o que andei brincando. Uma pequena contextualização ao intrépido viajante sobre o que são códons, porque eles precisam ser otimizados e o que diabos é essa “preferência de códons”.

Códons são os trios de combinações de letrinhas A,T,C e G do DNA (os nucleotídeos) que, depois de transcritos a RNA (em que a grande diferença é que os “T’s” são substituídos por “U’s”), são literalmente traduzidos em aminoácidos; ou seja: três nucleotídeos codificam um  aminoácido. A grande coisa dos códons é que eles são redundantes: existe mais de uma maneira de um aminoácido específico ser traduzido à partir dos trios de nucleotídeos. Os cientistas fizeram uma tabela espertinha que “decodifica” nucleotídeos em aminoácidos:

codons_aminoacids_table
Comece lendo do centro até às bordas do círculo combinando as letras que você for olhando pelo caminho. Por exemplo: U+A+C = Tyr, abreviação de Tirosina.

 Mas aí você se pergunta: “Querida Natureza, qual é o propósito disso!?”. A redundância da leitura de aminoácidos tem uma implicação muito importante na conservação do código genético; ela é a última barreira espertinha da contra mutações no DNA. Imagine que o “C” do códon UAC que traduz uma Tirosina fosse mutado e virasse um “U” (dando UAU): graças à redundância de tradução, o aminoácido Tirosina ainda continua sendo traduzido! Pra  se ter uma ideia de como isso é importante, uma única substituição de aminoácidos (o que pode acontecer com uma única mutação de nucleotídeos) já pode gerar doenças (pesquise sobre Anemia Falciforme).

Enfim, concluindo: existem muitos códons que podem ser traduzidos em diferentes tipos de aminoácidos. Como existem muitas opções, diferentes organismos costumam a ter preferências por diferentes códons para traduzir aminoácidos específicos – por exemplo: nós Humanos adoramos traduzir Arginina como AGA e AGG, já uma das bactérias do nosso cocô, a E.coli, acha muito mais interessante traduzir Arginina como CGU e CGC. Vai entender esses procariotos viu!

Mas porque isso acontece? Porque evolutivamente cada espécie foi selecionada em um ambiente particular, o que implica em diferentes necessidades de estabilidade do DNA em diferentes contextos, e portanto diferentes porcentagens de C e G, e A e T no genoma. Essas porcentagens direcionam quais códons os organismos preferem.

Por causa de tudo isso, quando algum cientista vai fazer o design de um pedaço de DNA, é preciso colocar a sequência no contexto do organismo a ser utilizado, deixando os códons “otimizados” para cada ser vivo – caso contrário, os genes inseridos no organismo serão pouco ou nada expressos.

Investigando leveduras

Mais profundamente, resolvi brincar dessas coisas querendo responder uma pergunta: “O quão compatível os códigos genéticos de duas espécies de leveduras podem ser?”. No caso, Pichia pastoris e Saccharomyces cerevisiae.

Primeiramente eu entrei no “Codon Usage Database“. Procurando por Pichia e Saccharomyces, o site dá uma tabela com a frequência de se encontrar determinado códon a cada mil pares de base. Eu peguei os resultados e coloquei num site chamado “Text Diff” – ele compara dois textos e mostra as diferenças e igualdades entre os dois. Com a comparação, dei print screen e destaquei as frequências mais discrepantes entre as duas espécies de levedura, obtendo o seguinte diagrama:

Comparação Pichia e Saccharomyces - códons
Texto em vermelho: Pichia. Texto em Verde: Saccharomyces. Laranja – diferença de 4 a 5; Rosa – diferença de 6 a 9; Amarelo – diferença acima de 10; Códons circulados – frequências iguais.

Fui atrás de cada códon, procurando o que codifica. Cheguei na seguinte tabela:

 Pichia Versus Saccharomyces Table

Eu chamei de “eficiência de códons” o quão os códons de Pichia funcionam em Saccharomyces, tomando como “códons incompatíveis” aqueles com diferença de no mínimo 4 entre as frequências de códon em cada espécie (a marcação em amarelo na imagem de comparação das frequências) – também estou tomando como hipótese que há uma relação direta entre frequência de códon e a preferência do mesmo por determinada espécie. Cheguei nesses valores através da porcentagem do número de códons “compatíveis” (totais –  incompatíveis). De 20 aminoácidos possíveis, apenas 7 seriam seus códons prontamente compatíveis.

Ambas as espécies são leveduras, e por isso eu esperava uma maior compatibilidade natural. O problema é que eu não tenho um controle para saber se a usagem de códons de cada levedura é realmente discrepante. Por isso, fiz a mesma comparação entre Pichia e E.coli. Como esses organismos são bem mais diferentes (um é eucarioto e outro procarioto), esperei uma diferença bem maior. (veja imagem abaixo)

Comparação Pichia e Ecoli - códons
Texto em vermelho: Pichia. Texto em Verde: E.coli. Laranja – diferença de 4 a 5; Rosa – diferença de 6 a 9; Amarelo – diferença acima de 10; Códons circulados – frequências iguais.

Legenda: Laranja – diferença de 4 a 5; Rosa – diferença de 6 a 9; Amarelo – diferença acima de 10; Códons circulados – frequências iguais.

Como esperado, dá pra ver claramente o quanto E.coli e Pichia são diferentes em comparação com Pichia e Sccharomyces. Nesse panorama, eu diria em Pichia e Saccharomyces são bem parecidas. Quanto mais comparações forem feitas mais certeza se terá do quão um organismo se parece com outro.

Otimização de Códons

Apesar de eu não ter certeza da relação direta entre frequência e preferência de códon, consegui observar coisas muito interessantes: a única inviabilidade de tradução correta entre Pichia e Saccharomyces de aminoácido é o Glutamato, em que as frequências de todas as possibilidades de códons não entram na minha classificação de “códons compatíveis” (diferença de frequência menor que 3). O resto dos códons podem ser compatibilizados entre espécies usando-se versões alternativas de códon para um mesmo aminoácio! 🙂

Quando se otimizam códons para deixar um plasmídeo compatível em diferentes plataformas, faz-se exatamente isso. O problema é que mesmo assim a expressão ainda não é ótima, então em geral prefere-se “sacrificar” a compatibilidade do plasmídeo em diferentes espécies para se ter um plasmídeo com os melhores códons em cada bichinho.

Existem vários programas que fazer essa otimização de códons rapidamente, mas em geral as empresas que sintetizam DNA já incluem isso (de graça ou não) no planejamento do plasmídeo a ser sintetizado.

Conclusão

Por fim, a conclusão que tirei disso tudo é: eu ACHO que um gene de Pichia funcionaria suficientemente bem em Saccharomyes e vice-versa. No caso de não conseguirmos sintetizar os genes que precisamos já códon-atimizados, talvez valha a pena fazer uma mistureba de DNA interespécies – mas só para as leveduras!