Um jogo para acabar com preconceitos

Qual é a melhor maneira de passar uma informação pra uma pessoa!?

Como os comerciais, filmes e canais de televisão estão aí pra comprovar, o entretenimento passa muito mais pra você do que mera diversão. É com essa ideia que ficamos pensando em como fazer as pessoas entenderem os conceitos e finalidades da abordagem da Biologia Sintética. Como não perdemos tempo para arrumar uma desculpa para nos divertir, criamos durante esse ano um jogo de cartas – inspirado em elementos de MunchkinBohnanzaMagic e War – para, além de ensinar de uma maneira divertida sobre conceitos de microbiologia e biologia molecular, informar melhor as pessoas e acabar com certos preconceitos envolvendo microrganismos bioengenheirados.

E olha que legal: além de levarmos essa ideia como nossa Human Practices na competição internacional de máquinas geneticamente modificadas desse ano (e sermos bastante elogiados por esse trabalho), emplacamos primeiro lugar com o projeto na Olimpíada USP do Conhecimento!

primeiro lugar USP Conhecimento

É, senhora Sociedade, eu te disse que nossa brincadeira é uma brincadeira séria! Tão séria que esse projeto não para aqui.

Game Crafter

O jogo estará disponível para download (se você quiser imprimir aí na sua casa) ou para compra através do maravilhoso site “The Game Crafter“, que é de uma empresa que imprime e vende jogos independentes, como o nosso. Desse jeito nosso jogo vai poder sempre fazer o que ele se propõe a fazer: ser jogado!

O jogo

O jogo funciona assim: cada jogador (até 4) escolhe uma carta de personagem personagem, como por exemplo o professor Fujita:

Senhor Fujita

Como dá pra ver, cada pesquisador tem uma personalidade específica e um chassi com que desenvolve seus projetos. No caso o senhor Fujita é um pesquisador que não colabora muito mas bastante competente, trabalhando com a largamente usada Escherichia coli.

O grande objetivo do jogo é construir primeiro que o seu colega um circuito gênico – afinal estamos falando de academia, minha gente! Para construir o circuito o jogador deve “criar”, acumular e trocar BioBricks, até que tenha a combinação de Biobricks necessários para completar o circuito, como por exemplo esse:

Carta Objetivo

Os Biobricks podem ser baixados com “pontos de metabolismo”, que é a representação dos recursos metabólicos e energéticos que o microrganismo tem para passar com sucesso pelo processo de transformação gênica de cada parte, a ser inserida sequencialmente na célula (no exemplo anterior há 8 BioBricks).

A dinâmica das cartas se dá quando elas ainda estão na sua mão e não foram “baixadas” no organismo. Há também (no melhor estilo Munchkin – quem já jogou sabe do que estou falando!) cartas dinâmicas usadas por um jogador em si mesmo ou em outros jogadores, como essa abaixo:

Carta dinâmica

E, por último, o último elemento do jogo é a tão temida aleatoriedade! Aquelas variáveis sem controle que sempre fazem seu experimento não sair como você queria. Um jogador no final da rodada joga um dado: dependendo do número tirado uma “carta aleatória” surge, ajudando ou prejudicando o ganho de pontos de metabolismo (que ocorre por rodada) dos chassis de cada pesquisador.

Cartas Aleatórias

Fizemos um overview do projeto num vídeo do youtube, dê uma olhada:


Quando o nosso novo site ficar pronto vamos ter um endereço especial com o jogo, por enquanto fica aqui nossa promessa de acesso aberto a esse conteúdo. 🙂

Acontece nos filmes, acontece na vida, acontece no Clube de Biologia Sintética

Este é mais um projeto que surgiu das reuniões do Clube de Biologia Sintética, feito por pessoas das mais diversas áreas e que se conheceram no clube. Esse é o objetivo principal do grupo: Reunir e ensinar pessoas de maneira divertida , integrar áreas, criar projetos científicos inovadores e criativos e, por fim, gerar impactos positivos na sociedade.

Você que compartilha dos nossos ideais, acompanhe nossas reuniões pessoalmente ou pelo ao vivo pelo streaming no nosso canal do youtube, ou ainda entre em contato pelo nosso email, canal do facebook e twitter!

As Incríveis Novas Reuniões do Clube de Biologia Sintética

bem vindo ao clube

É isso aí! Depois de um silêncio sepulcral no blog, uma medalha de prata no iGEM regional e mil projetos em andamento, retomamos oficialmente as reuniões do, agora “Incrível Novo Clube de Biologia Sintética”.

“Mas, Otto, porque ele agora é ‘Incrível’?”.

Bem, na verdade eu não sei. Sugiro que você compareça para descobrirmos juntos. Mas eu juro de pés juntos que eu espero que seja incrível. Sabe porque? Porque vamos fazer tudo em um novo formato bem menos chato, mais participativo e… Com as transmissões por YouTube funcionando!

As reuniões terão duas partes: 20-30 minutos de uma apresentação temática pré-estabelecida e mais meia hora de reunião aberta para qualquer um levantar uma discussão, apresentar algo interessante que leu em algum lugar, divulgar uma ideia, dar notícias de projetos ou propor um novo tema para as próximas reuniões.

Nós até imprimimos cartazes lindões e espalhamos pela USP, olha só:

fotos vivi cartaz

A nossa filosofia de grupo também ficou mais definida e coesa: não, não somos um bando de alunos que fica fazendo times para o iGEM, somos um bando de alunos que forma bandos de alunos que discutem biotecnologia – e nesse processo, formamos espontaneamente equipes e grupos para diversas oportunidades (inclusive o iGEM).

Sobre o que de fato vocês planejam discutir?

Bem, até hoje discutimos projetos de bioengenharia, ou seja, envolvendo microrganismos geneticamente “engenheirados”. De novo: microrganismos, não Beagles ou ratinhos! (Até agora… Haha, BRINKS!)

Seguimos a abordagem da Biologia Sintética nisso tudo, que é tentar gerar metodologias e equipamentos mais baratos, rápidos e ainda precisos para fazer diversas coisas em biotecnologia, aplicando camadas de abstração (essa é pra vocês, exatas) para desenvolvimento de ideias. E tudo se preocupando com as questões éticas e, como costumamos chamar, de “Práticas Humanas”, envolvendo educação e informação sobre biotecnologia.

Portanto, estamos abertos a todos que querem fazer da Biologia uma ciência exata, na medida do possível – sem deixar de se preocupar em como isso impactará a sociedade.

“Eu não manjo nada de Bio. Não sei se vou aproveitar…”

Vai aproveitar sim! Somos um grupo interdisciplinar e vai ter muita gente que sabe o que você não sabe mas também você vai saber alguma coisa muito melhor do que muita gente também. Os conceitos de Biologia Molecular serão introduzidos durante os processos de discussão e nos preocuparemos que todos que não são da área possam entender – da mesma maneira que, o Marcelo (também escritor do blog), fez esse semestre um minicurso de modelagem matemática de sistemas biológicos para quem é de biológicas entender modelagem. O importante é aprender fazendo!

Quem pode participar?

Você é de exatas e quer aprender mais de biotecnologia? Pode vir!

Você é de biológicas e quer trabalhar de maneira “mais exata”? Venham aí!

Você é de humanas? Venha também pra colocar juízo e crítica nas nossas discussões!

Enfim: todos interessados podem participar! Principalmente se você acha que pode fazer mais com sua criatividade e iniciativa. Traga suas ideias, projetos e discussões!

O principal objetivo de tudo é: que seja divertido.

E também que todos aprendam nesse processo, é claro.

Quando e Onde!?

As reuniões serão todas as quartas feiras, começando nessa quarta, dia 30 de Outubro, das 18:30 às 19:30.

Tudo acontecerá, a priori, sempre na Biblioteca das Químicas, no campus da USP do Butantan, aqui:

E o resto?

Bem, ainda devemos divulgar muitas notícias (motivo pelo qual estivemos ocupados a ponto de deixar o blog paradão), dentre elas:

  • Teremos um site lindo e maravilhoso! Não seremos mais um blog que quer ser um site, mas um site que que tem um blog! (Ainda estaremos na plataforma do SBBr!)
  • Estamos discutindo oportunidades dentro da USP para maior apoio e formalização da iniciativa. Divulgaremos em breve, caso tudo dê certo.
  • Sim, fomos no iGEM regional de novo esse ano! Levamos prata outra vez, mas ficamos felicíssimos (tá, muito felizes, felicíssimos seria se fôssemos todos pra Boston também) com nosso trabalho, e principalmente, com o time brazuca da UFMG que emplacou o Brasil lá em Boston esse ano! Bão demais esse pessoal, seu!
  • Fizemos um jogo de cartas de biotecnologia envolvendo BioBricks! Ficou muito legal, deem uma olhada num preview das cartas:

pesquisador_fujita

Ainda estamos devendo um post bonitinho da experiência no iGEM deste ano, além de outros posts para ajudarem as outras iniciativas brasileiras que estão nascendo. Paciência, chegaremos lá, prometo!

Então, venham praticar uma desobediência tecnológica e criativa, pessoal! Aqui vai ter gente boa igual a você pra se divertir com ciência, empreendedorismo e interdisciplinariedade. 🙂

Jamboré Brasil!

Jamboré

Quem diria. A um ano atrás estávamos nós fazendo vaquinha virtual pra levar o Brasil para a competição internacional de máquinas geneticamente modificadas e hoje, ainda na luta, podemos compartilhar o fardo herdado da Unicamp de representar a ciência tupiniquim no iGEM. Que lindo isso.

Mais lindo ainda é que as equipes de Manaus, Belo Horizonte e São Paulo são amiguinhas! Numa das competições mais bizarras do mundo (o iGEM) o conceito de competição também é “distorcido”: ganha mais quem colabora mais – o “distorcido” deveria ser exatamente o contrário na ciência mundial hoje em dia, mas deixa pra lá! E é por isso que nós vamos nos reunir no primeiro encontro nacional de equipes do iGEM: para trocar experiências, fazer networking, se conhecer melhor e conversar bastante sobre coisas nerds, como Biologia Sintética, é claro. Afinal, a gente faz o que a gente ama, não é mesmo!?

Enfim! Nós das equipes do Brasil, que estamos aqui na raça, na gana, na teimosia pra fazer um Brasil e, “de tabela”, um mundo melhor, abrimos esse encontro de jovens interdisciplinares e amantes de biotecnologia para todo mundo! Sim, aqui na USP, em São Paulo! É o “Jamboré”! Porque Jamboree é “nas gringa” [fora do país], aqui é Jamboré!

Local e Data

Tudo vai acontecer neste sábado, dia 17 de Agosto, no Instituto de Química, no famigerado “Queijinho” (ou, Complexo Ana Rosa Kucinski, como foi rebatizado recentemente), sala A2. Veja o mapa aqui:

Visualizar Jamboré! em um mapa maior

Cronograma

As atividades vão ser de manhã e a tarde. Atividades infinitas!

Horário Atividade
10H – 10:30H Abertura: “Biologia Sintética, iGEM e Brasil”
10:30 – 12:00 Apresentação dos projetos brasileiros no iGEM 2013
12H – 14H Almoço
14H – 15:30H Play-teste de Jogo de Cartas sobre Biologia Sintética
15:30H – 15:50H Coffee-Break
15:50H – 17H Mesa Redonda sobre a formação das equipes do iGEM no Brasil

 

Pessoas de todas as áreas são bem vindas. Aqui interdisciplinariedade (e discussões estranhas) são nossa especialidade. Não esperamos que você saiba nada de Biologia Molecular ou modelagem matemática, para qualquer dúvida nós vamos estar ali para ajudar. Ou a piorar. Depende do ponto de vista.

O evento é aberto a todos fora e dentro da comunidade USP. Então se quiser um programa nerd de qualidade esse final de semana, venha para a Cidade Universitária!

Nosso grito de independência energética ainda está atravessado na garganta

Produzido a partir da cana-de-açúcar e conhecido pelos brasileiros há mais de 30 anos, o etanol foi a resposta nacional para a crise do petróleo e a busca de um combustível mais limpo. Entretanto, para encher o tanque do seu carro, é necessário meia tonelada de cana. E mais: o etanol tem apenas 2/3 da eficiência da gasolina e requer áreas que poderiam ser empregadas para o plantio de alimentos. O Projeto Pró-Álcool, criado na década de 70, parecia ser nosso grito de independência na área de energia automotiva. Mas este grito corre o risco de ficar atravessado na nossa garganta. Em 1975, uma tonelada de cana-de-açúcar era capaz de produzir 65 litros de álcool.  Quase quarenta anos depois, este número subiu para apenas 90 litros.

1

Em 2012, durante o encontro Rio +20, quarenta minivans abastecidas com etanol de segunda geração foram utlizadas no evento. A diferença do etanol de segunda geração é que este pode ser fabricado a partir da celulose, presente em qualquer parte da planta, como bagaço, palha e folhas. Essa nova tecnologia deve aumentar em 40% a produção sem que haja crescimento da área plantada e espera-se que atinja preços competitivos em 2016. Isso é muito importante pois o plantio da cana no Brasil já ocupa 8,1 milhões de hectares, uma área quase do tamanho de Portugal. A expansão desta cultura deslocaria pastos e outras plantações para o interior do país, intensificando o desmatamento, o uso de fertilizantes e o aumento dos preços.

imagesPor isso, diversas empresas, principalmente americanas, estão correndo atrás dos combustíveis conhecidos como “drop in fuels”, assim chamados pois utilizam a mesma infraestrutura de distribuição e armazenamento dos combustiveis fósseis e não exigem alterações no motor. A start-up Joule Unlimited pretende entregar o que eles chamam de Liquid Fuel from the Sunusando apenas três ingredientes: luz solar, CO2 e água não potável. Sem ocupar áreas agrícolas, alimentos nem água limpa, a empresa emprega cianobactérias geneticamente modificados para produzir lipídios e carboidratos que podem ser convertidos em etanol, gasolina, diesel e combustível para avião. A Audi está apostando nisso. Ela fez uma parceria com a Joule Unlimited para testar os combustíveis Sunflow™-E (etanol)Sunflow™-D (diesel) e  oferecer um transporte pessoal sem emissão de CO2.

Untitled4

Embora a primeira coisa que venha à mente quando se fala em petróleo seja combustível, ele na verdade está incorporado em muitos do produtos que usamos no dia-a-dia. Fertilizantes, pesticidas, cimento, plástico, produtos farmacêuticos, roupas sintéticas são apenas alguns itens que dependem dele. Por isso, para a LS9 (Life Sustain 9-Billion), “o melhor substituto do petróleo é o petróleo”. A empresa que tem como co-fundador o cientista George Church está desenvolvendo uma E. coli capaz de produzir hidrocarbonetos sob medida utlizando uma variedade de fontes de carbono, como cana-de-açúcar e milho. O objetivo maior é desenvolver o micro-organismo para utilizar polissacarídeos não comestíveis ao invés de fontes de alimento. A tecnologia permite que sejam selecionados o comprimento da cadeia carbônica, ramificações, saturação e grupo funcional. O produto então formado é secretado pela bactéria e permite que seja facilmente removido do meio de cultura. Um dos produtos da LS9, é o UltraClean DieselTM, que já recebeu aprovação da EPA (Environment Protection Agency) para ser comercializado. Para a produção em massa a empresa adquiriu em 2010 uma planta de biodiesel em Okeechobee, na Florida onde pretende produzir incialmente entre 190 e 380 mil litros.

Mas o verdadeiro combustível de uma nação não é o petróleo, o etanol, a energia atômica ou solar, mas sim o capital financeiro e o capital humano que são investidos em P&D. Este é o caminho que temos que seguir. A biologia sintética pode ajudar a solucionar muitos dos nossos problemas de modo eficiente, utilizando micro-organismos que não dependam de terras aráveis, fontes de alimentos e água potável para produzir hidrocarbonetos. Investir em pesquisas, em novas tecnologias, em empreendedores e profissionais brasileiros é o que o país precisa para dar seu verdadeiro e definitivo grito de independência.

Referências:

Estratégias para tempos adversos.

Em tempos adversos é comum haver muitas mudanças e isto não acontece somente com os humanos que saem as ruas, fazem guerra ou revolução. Na natureza observamos inúmeras estratégias dos seres vivos para superar tempos difíceis, algumas bastante chocantes do ponto de vista humano, tais como infanticídio ou canibalismo. E no mundo microscópio não é diferente.

Se você pensa que as bactérias morrem pacíficas quando as condições não são favoráveis você está bastante enganado. Até mesmo para estes minúsculos seres unicelulares a vida pode ser complexa e cheias de decisões difíceis e estressantes a serem tomadas. Existem diversas estratégias para lidar com tempos difíceis, tais como escassez de alimentos e danos ao DNA. Uma das estratégias mais radicais e mais utilizadas quando a coisa está realmente feia é formar esporos, uma resposta celular bastante complexa que envolve a ativação de mais de 500 genes ao longo de aproximadamente 10 horas. Este processo termina com a morte da célula mãe e a formação de uma célula filha dormente com a capacidade de resistir a situações extremas como calor, radiação e presença de substancias químicas. Por outro lado, durante este tempo o esporo não pode tirar vantagem imediata de situações favoráveis para se reproduzir.

Esporulação é uma tomada de decisão bastante complexa e que não se inicia simplesmente com a escassez de alimentos, mas é resultado de uma série de passos que podem ser descritas como decisões celulares sobre como lidar com o stress presente. Envolve, por exemplo, uma comunicação entre as bactérias da mesma colonia por um mecanismo chamado de quorum sensing. Além disto, antes da esporulação, comumente as bactérias tentam outras táticas como ativar um flagelo para buscar alimentos, secretar antibióticos e outras substancias na tentativa de destruir outros micróbios competidores.  As células também checam uma série de condições internas antes de decidir esporular tais como a integridade do DNA cromossomal.

Mesmo quando a maior parte da colonia decide por esporular, o material gerado pela lise da membranas das células que esporularam são aproveitados por outras células da colonia que, no caminho para esporular, entram no estado chamado de competência, que consiste em abrir poros na membrana para facilitar a entrada de DNA exógeno, que pode ser utilizado para reparo do DNA e eventualmente como fonte de informação genética que as ajudará a resistir ao momento. Há ainda um outro caminho mais radical  tomado por algumas células da colônia que consiste em secretar alguns fatores antibacterianos que faz com que células irmãs fiquem incapazes de esporular, causando inclusive a lise de sua membrana, em uma espécie de canibalismo. Interessante notar que, sobre a perspectiva de teoria de jogos, a estratégia de canibalismo seria predominante sobre a estratégia de entrar em competência, o que não é observado. Isto indica que possivelmente as células em competência são imunes ao canibalismo, mas não sabemos ainda se é este o caso.

Modelos teóricos/moleculares para este tipo de tomada de decisões normalmente consistem na integração de módulos gênicos formados principalmente por circuitos regulados por diversos fatores de transcrição e micro RNAs. Estes tipos de sistemas gênicos também desempenham um papel importante no desenvolvimento embrionário e de células cancerígenas, motivo pelo qual tem se dado muita atenção a este tipo de estudo.

Referencias:

[1] Schultz, D., Wolynes, P. G., Jacob, E. B., & Onuchic, J. N. (2009). Deciding fate in adverse times: sporulation and competence in Bacillus subtilisPNAS.
[2] Lu, M., Jolly, M. K., Gomoto, R., Huang, B., Onuchic, J. N., & Ben-Jacob, E. (2013). Tristability in Cancer Associated miRNA-TF Chimera Toggle SwitchThe Journal of Physical Chemistry B.
[3] Stavropoulos, T., Schultz, D., Onuchic, J. N., & Ben Jacob, E. (2012). Breaking the Code of Bacteria Decision MakingBiophysical Journal.
[4] Ben-Jacob, E., S Coffey, D., & Levine, H. (2012). Bacterial survival strategies suggest rethinking cancer cooperativityTrends in microbiology.

Primeira Mesa Redonda do Clube de Biologia Sintética da USP

A Monique já tinha dado as caras no blog – leia aqui, mas ainda não tinha participado das reuniões do clube. Veio de São Carlos só para nos conhecer, que honra! Nós, nada bobos, aproveitamos para para fazer uma breve discussão sobre o contexto da biologia sintética nos EUA – mais precisamente em boston, onde ela esteve e participou do iGEM com a Universidade de Boston – e no Brasil. Estamos engatinhando frente à pesquisa americana, mas estamos no caminho. É isso que importa. Encontros assim servem para abrir nosso olhos e olharmos mais adiante, onde queremos chegar.

Nesse encontro discutimos sobre os projetos e os perfis das equipes participantes, arrecadação de fundos e as diferenças Brasil-EUA. A Monique nos deu uma introdução sobre o projeto que realizaram, e é claro, contamos como foi a experiência do nosso time frente à competição.

Dividi o vídeo em 5 partes, e por temas. Assim pode ficar mais fácil para assistir. Aproveitem e sintam-se livre para fazerem perguntas. Podemos continuar a discussão por aqui.

Parte 1 – Apresentações Equipes do iGEM e Perfil 

Parte 2 – Financiamentos e Captação de Recursos

Parte 3 – O de Time de Boston (BU) e Comparações

Parte 4 – Os Projetos da USP-UNESP 

Parte 5 – Jamboree 

Aproveito para indicar a leitura sobre o time de Groningen. Já falamos neles por aqui.

Assinatura

Minas Gerais no iGEM

532229_456099491139421_18887788_n

Em 2012, dos 16 times da América Latina no iGEM, 6 eram do México. Achamos fascinante o fato deles terem feito um jamboree mexicano e sabiamos que o Brasil também tem estrutura para fazer algo semelhante. Finalmente, este ano temos pela primeira vez mais de um time na competição. Somos 3 times brasileiros, dos quais já falamos dos projetos do time da USP e da UFAM. Resta agora conhecer um pouco do terceiro time que representará o nosso país na competição competição que é da UFMG.

 Escrito por Marianna Kunrath Lima e Clara Guerra Duarte

Como tudo começou

Este será o primeiro ano em que uma equipe da UFMG irá participar do iGEM. A ideia de formar uma equipe veio do aluno de medicina Lucas Ribeiro. Ao ler e se interessar pelo evento, ele começou a procurar professores da UFMG que possuíam o perfil/currículo condizente com biologia sintética, que é a base do iGEM. Encontrou a Dr Liza Felicori, professora do Departamento de Bioquímica e Imunologia do ICB-UFMG, que possui experiência na área. E assim começaram os esforços para montar uma equipe da UFMG.

Em janeiro de 2013, foi feita uma palestra para os alunos de graduação e pós graduação interessados na competição. Foram selecionados 2 alunos da graduação de Ciências Biológicas, 1 aluno da graduação de Biomedicina, 1 aluno da graduação de Medicina, 1 aluno da graduação de Ciências da Computação, 1 aluna do Mestrado em Bioquímica e Imunologia, 1 aluno do Mestrado em Bioinformática, 1 aluno do Mestrado em Ciência da Computação, 1 pós-doutoranda em Bioinformática e 1 pós-doutoranda em Bioquímica e Imunologia. Também fazem parte da equipe as professoras Liza Felicori e Santuza Ribeiro, da Bioquímica e Imunologia, além do professor Omar Paranaíba, da Ciência da Computação.

fig3

Logo que a equipe foi escolhida, iniciaram-se as reuniões, todas as terças-feiras, às 14 horas. Como o grupo é bem eclético, foram necessárias reuniões introdutórias, sobre assuntos básicos de cada área, para familiarizar os integrantes sobre temas que não dominavam. Além disso, várias apresentações sobre projetos e equipes que participaram de iGEMs anteriores foram feitas, para entendermos bem a competição e termos ideias para o nosso projeto. Como somos pioneiros na universidade, tivemos alguma dificuldade. Após dois meses de reuniões, brainstorms e depois de muito quebrar a cabeça, conseguimos fechar uma ideia preliminar.

Projeto

fig1

Decidimos desenvolver um projeto que levasse à detecção de marcadores biológicos prognósticos de síndrome coronariana aguda. Problemas coronarianos têm se tornado cada vez mais frequentes na população, devido aos hábitos sedentários e à má alimentação. Doenças cardiovasculares levam a perdas econômicas, além do evidente prejuízo à saúde que culmina com a perda de vidas. Existem vários testes diagnósticos para estas enfermidades que utilizam biomarcadores, mas estes testes apenas confirmam a doença após a ocorrência de um evento drástico, como infarto ou angina, não sendo capazes de prevê-los. Assim, dada a importância do desenvolvimento de ferramentas capazes de realizar o prognóstico de doenças cardíacas, nosso projeto baseia-se na ideia de detectar biomarcadores existentes no sangue de pacientes, sendo que estes marcadores permitem a constatação prévia da doença, anteriormente a qualquer manifestação da mesma. Para realizar esta detecção, serão utilizadas bactérias Escherichia coli transformadas com plasmídeos que possuam biobricks capazes de “sentir” as entradas (biomarcadores) e biobricks capazes de gerar saídas (fluorescência) para estas entradas. Será utilizada a integração dos sinais gerados por mais de um biomarcador, a fim de aumentar a acurácia do teste. O logo e o nome do projeto (Cardbio) já foram escolhidos.

fig2Para testarmos a aceitação dessa ideia, bem como para recebermos críticas e sugestões, apresentamos um seminário na Pós Graduação em Bioquímica e Imunologia. Esse seminário foi de grande valia para a equipe, ele serviu não apenas para os propósitos citados acima, como também para unir os integrantes, que tiveram que se esforçar para criar uma boa apresentação e para embasar o projeto.

Desde então, vários progressos foram feitos. As modelagens computacionais já estão em andamento, os biobricks estão sendo desenhados, ganhamos uma nova integrante da graduação em Design Gráfico, estamos desenvolvendo meios de conseguir patrocínio e estamos correndo atrás do tempo, uma vez que nossa equipe começou um pouquinho atrasada em relação às demais equipes do iGEM. Temos uma página no Facebook e um blog em construção. Gostaríamos de convidar todos os leitores da SynbioBrasil e todos os iGEMers a contribuírem para o crescimento do nosso projeto, além de agradecermos à equipe da USP pela oportunidade de divulgarmos nossas ideias.

Sequenciamento em Marte

Texto escrito por: Fernando Lindenberg

Tem gente que jura já ter visto discos voadores e até ter entrado em contato com extraterrestres. Verdade ou não, esse é um assunto que desperta curiosidade em muitos e medo em tantos outros. Ao contrário do imaginário popular, é provável que os seres extraterrestres já tenham chegado na Terra há 4 bilhões de anos e que nós evoluimos a partir deles. É isso o que sugere uma teoria conhecida como panspermia.

Talvez não seja mais necessário esperar por alienígenas visitarem nosso planeta ou uma longa discussão sobre a veracidade dos organismos fossilizados encontrados em meteoritos para confirmar a existência de ETs. Em breve teremos acesso ao código genético de organismos marcianos, de acordo com a proposta de dois cientistas, Craig Venter e Jonathan Rothberg. Ambos estão em uma corrida, embora não declarada oficialmente, para sequenciar o DNA de possíveis formas de vida que existam ou existiram em Marte. Por isso, eles querem uma carona até o planeta vermelho para sequenciar possíveis formas de vida que possam encontrar por lá.

VenterA carona não é para eles, mas para o sequenciador que pretendem enviar. Venter está confiante que
encontrará formas de vida que contenham DNA em Marte, como afirmou em uma conferência da Wired Health no ano passado, em Nova York. Sua equipe está desenvolvendo e testando o que ele chama de “teletransporte biológico”. Um robô que será enviado para Marte capaz sequenciar o DNA encontrado no local, mesmo que seja de uma única célula, e transmitir a sequência do organismo extraterrestre para um computador aqui na Terra. De acordo com ele, testes já estão sendo feitos no deserto de Mojave, onde cientistas simulam as condições de exploração do espaço. Com o DNA digitalizado será possível  sintetizá-lo, injetá-lo em uma célula universal receptora e dar vida a um ET. A entrevista completa sobre esse assunto pode ser assistida aqui (11:00).

 

Ion Torrent

Correndo em outra frente está Jonathan Rothberg, fundador da Ion Torrent, em um projeto financiado     pela NASA chamado SET-G (The Search for Extra-terrestrial Genomes) também pretende sequenciar DNA no planeta vermelho. Para isso será necessário reduzir o tamanho de seu sequenciador de grande sucesso, o Ion Personal Genome Machine, de trinta para apenas três quilos, viabilizando a viagem de milhões de quilômetros.

Mas por que não trazer uma amostra de Marte? Tessi Kanavarioti, químico envolvido no estudo de pedras que vieram da lua na década de 70, garante: “Devido a possibilidade de contaminação, ninguém iria acreditar em você”. Foi o que aconteceu em 1971, quando astronautas da Apollo 12 trouxeram uma câmera de TV que ficou três anos na lua. Nela foi encontrada uma única bactéria Streptococcus mitis. Muitos disseram se tratar de uma contaminação, embora fosse apenas uma única bactéria. O micro-organismo estava dormente e ganhou vida novamente na Terra. Além da contaminação, o sequenciamento em Marte reduziria o tempo para obter essa amostra, caso ela fosse enviada para ser analisada por aqui.

Mas este é um projeto de alto risco. As moléculas de DNA possuem uma meia-vida de 521 anos (tempo que leva para metade das ligações fofodiéster se romperem), portanto temos que acreditar que exista vida agora em Marte, ou organismos mortos há menos de 1,5 milhões de anos, caso contrário os fragmentos encontrados seriam muito pequenos e não trariam informações úteis. Além disso, nada garante que as formas de vida que possam existir por lá tenham os mesmos componentes do nosso DNA.

O espaço parece um local improvável de abrigar formas de vida como conhecemos, seja por conta da baixa temperatura, pouco oxigênio ou elevada radiação. Mesmo sem foguetes podemos encontrar organismos que vivem em condições que não consideramos favoráveis. Esses organismos são os extremófilos, ou seja, eles adoram condições extremas de pH, salinidade, temperatura ou radiação. Um caso interessante é a bactéria Deinococcus radiodurans, encontrada vivendo dentro de reatores nucleares. É provável que esses sejam os tipos de organismos que possamos encontrar em outros planetas.

MarteAlém de micro-organismos que conseguem sobreviver em condições que consideramos extremas, novas
evidências obtidas pelo robô Curiosity da NASA sugerem que o planeta já foi habitável. A análise de uma rocha sedimentar mostrou a presença de enxofre, nitrogênio, hidrogênio, oxigênio, fósforo e carbono, o que aumenta as chances de um possível sequenciamento dar certo.

Caso seja encontrado DNA, teremos mais evidências para sustentar a hipótese de que a vida não teve origem aqui na Terra e que ela pode ter evoluído de forma diferente em outros planetas. Uma próxima viagem para Marte está planejada pela NASA para 2018, mas nem Venter nem Rothberg tem lugar garantido ainda. O que torna a corrida ainda mais emocionante.

Referências:

Manaus no iGEM

A história do Brasil do iGEM começou em 2009 com a Unicamp, que também nos representou em 2011. Ano passado foi a vez do nosso time, da USP em parceria com a Unesp. Neste ano, ficamos muito felizes de saber que teremos mais times brasileiros na competição. Até o momento estão inscritos 3 times que representarão nosso país na competição!! E um deles é o time Manaus_Amazonas-Brazil.

Neste post vamos contar um pouco sobre o time do Amazonas e seu projeto. Diferentemente do time da USP, cuja iniciativa começou por parte dos estudantes, o time de Manaus começou por iniciativa do professor Carlos Nunes. Ano passado nosso time teve o prazer de conhecer o professor Carlos que acompanhou a competição para este ano montar um time na sua universidade.

Segue abaixo um pouco do time e de seu projeto, contado pelos próprios alunos integrantes:

Como tudo começou

No final do ano de 2012, graças ao incentivo do professor Carlos Nunes, começamos a nos interessar pelo iGEM e a nos reunir. No início, muitos não tinham ideia de como fazer funcionar a dinâmica do grupo, muito menos como formar um, além de qual projeto iríamos propor.

Após pesquisar e estudar os projetos das equipes anteriores e ter uma melhor noção sobre a competição, começamos a colocar nossa criatividade para funcionar e elaborar ideias/projetos bem distintos. Não foram poucas as inspirações e chegamos a algumas propostas: a bactéria armadilha para o HIV (“Colitrap”), a detectora de Incêndio (“Firebacter”), a jogadora de Pacman (“Pac-Coli”), a indicadora de temperatura (“TermoColi”), a espartana (“MagnetoColi”) e a escolhida, bactéria produtora de energia elétrica (“Electrobacter”).

manausfig2

O projeto

manausfig1O foco principal da Electrobacter é degradar gorduras de óleos de fritura residuais amplamente utilizados e descartados por redes de restaurantes para a geração de energia elétrica, pois os mesmos, quando são descartados inadequadamente, apresentam-se como um agente poluidor ao ambiente e o tratamento para eliminar esses poluentes requer o uso de produtos químicos tóxicos, além de o processo ser oneroso e pouco efetivo.
Apesar de já existirem alternativas para o aproveitamento dos óleos de fritura como a produção de sabão, o direcionamento de gorduras para geração de energia trará uma nova opção de bioenergia por meio da biorremediação.

A bactéria Shewanella amazonensis que pretendemos utilizar é capaz de fazer o transporte de elétrons dispostos no meio, gerando eletricidade. A proposta é melhorá-la geneticamente para degradar estes óleos através da β-oxidação (reação bioquímica de quebra de gorduras), potencializando a produção de elétrons.  O gênero Shewanella é um grupo de bactérias que foram descobertas recentemente e os estudos sobre ela ainda são escassos, principalmente na área da biologia molecular, porém seu potencial não só pela possibilidade de geração de energia, quanto pela sua habilidade de captar metais dispostos no meio.  Entre as possibilidades de como modifica-la, optamos por dois caminhos: modificar o repressor ou o promotor dessa via metabólica. Tanto de uma forma quanto da outra, a β-oxidação será possível mesmo com a presença mínima de glicose no meio, porém os efeitos dessa intervenção genética deverão ser estudados de perto para que não tenhamos que sempre deixá-la em condições de estresse.

Com esse o projeto de caráter ambiental e ecológico, estamos empolgados, determinados a participar do iGEM e ser o primeiro time a representar o estado do Amazonas.

 

As dificuldades

Infelizmente, não só de determinação e força de vontade vive um time do iGEM. Uma das principais dificuldades é pagar a inscrição do time na competição que custa em torno de 3 mil dólares, que paga não somente a inscrição como o envio das partes biologicas necessárias ao projeto e custos do evento. A universidade, bem como agências de fomento de pesquisa, não tem programas de apoio para uma competição como o iGEM. Ano passado, contamos com a colaboração de mais de 40 pessoas do mundo todo que nos apoiaram através do chamado crowdfunding.

Se você ficou triste pois perdeu a oportunidade de apoiar um time brasileiro a fazer ciência de uma forma inovadora e divertida, o time de Manaus está precisando de apoio e você pode colaborar por aqui.

 

Para saber mais sobre o grupo:

Veja o video do grupo

Blog do grupo

Página no Facebook

Brincando de Comparar Códons

Sou daquelas pessoas que simplesmente não conseguem dormir direito com um mistério. Essa é uma obsessão que provavelmente muitos cientisas (e “wannabe scientists”, como eu) têm. Às vezes ficamos obcecados com uma coisa muito importante, às vezes com uma coisa banal e muitas vezes com algo que você nunca parou para pensar direito. O mais emocionante é que qualquer resposta de uma dúvida tem aquela probabilidade mágica de revelar algo impressionante ou bem útil. Hoje (dia dessa postagem), fiquei obcecado por tentar entender “na prática” qual é a grande ideia da otimização de códons e o quanto os organismos podem ter preferências de códons diferentes.  Aqui está o registro da investigação do pequeno mistério de hoje!

Códons, Otimizações e Preferências

Antes de discorrer sobre o que andei brincando. Uma pequena contextualização ao intrépido viajante sobre o que são códons, porque eles precisam ser otimizados e o que diabos é essa “preferência de códons”.

Códons são os trios de combinações de letrinhas A,T,C e G do DNA (os nucleotídeos) que, depois de transcritos a RNA (em que a grande diferença é que os “T’s” são substituídos por “U’s”), são literalmente traduzidos em aminoácidos; ou seja: três nucleotídeos codificam um  aminoácido. A grande coisa dos códons é que eles são redundantes: existe mais de uma maneira de um aminoácido específico ser traduzido à partir dos trios de nucleotídeos. Os cientistas fizeram uma tabela espertinha que “decodifica” nucleotídeos em aminoácidos:

codons_aminoacids_table
Comece lendo do centro até às bordas do círculo combinando as letras que você for olhando pelo caminho. Por exemplo: U+A+C = Tyr, abreviação de Tirosina.

 Mas aí você se pergunta: “Querida Natureza, qual é o propósito disso!?”. A redundância da leitura de aminoácidos tem uma implicação muito importante na conservação do código genético; ela é a última barreira espertinha da contra mutações no DNA. Imagine que o “C” do códon UAC que traduz uma Tirosina fosse mutado e virasse um “U” (dando UAU): graças à redundância de tradução, o aminoácido Tirosina ainda continua sendo traduzido! Pra  se ter uma ideia de como isso é importante, uma única substituição de aminoácidos (o que pode acontecer com uma única mutação de nucleotídeos) já pode gerar doenças (pesquise sobre Anemia Falciforme).

Enfim, concluindo: existem muitos códons que podem ser traduzidos em diferentes tipos de aminoácidos. Como existem muitas opções, diferentes organismos costumam a ter preferências por diferentes códons para traduzir aminoácidos específicos – por exemplo: nós Humanos adoramos traduzir Arginina como AGA e AGG, já uma das bactérias do nosso cocô, a E.coli, acha muito mais interessante traduzir Arginina como CGU e CGC. Vai entender esses procariotos viu!

Mas porque isso acontece? Porque evolutivamente cada espécie foi selecionada em um ambiente particular, o que implica em diferentes necessidades de estabilidade do DNA em diferentes contextos, e portanto diferentes porcentagens de C e G, e A e T no genoma. Essas porcentagens direcionam quais códons os organismos preferem.

Por causa de tudo isso, quando algum cientista vai fazer o design de um pedaço de DNA, é preciso colocar a sequência no contexto do organismo a ser utilizado, deixando os códons “otimizados” para cada ser vivo – caso contrário, os genes inseridos no organismo serão pouco ou nada expressos.

Investigando leveduras

Mais profundamente, resolvi brincar dessas coisas querendo responder uma pergunta: “O quão compatível os códigos genéticos de duas espécies de leveduras podem ser?”. No caso, Pichia pastoris e Saccharomyces cerevisiae.

Primeiramente eu entrei no “Codon Usage Database“. Procurando por Pichia e Saccharomyces, o site dá uma tabela com a frequência de se encontrar determinado códon a cada mil pares de base. Eu peguei os resultados e coloquei num site chamado “Text Diff” – ele compara dois textos e mostra as diferenças e igualdades entre os dois. Com a comparação, dei print screen e destaquei as frequências mais discrepantes entre as duas espécies de levedura, obtendo o seguinte diagrama:

Comparação Pichia e Saccharomyces - códons
Texto em vermelho: Pichia. Texto em Verde: Saccharomyces. Laranja – diferença de 4 a 5; Rosa – diferença de 6 a 9; Amarelo – diferença acima de 10; Códons circulados – frequências iguais.

Fui atrás de cada códon, procurando o que codifica. Cheguei na seguinte tabela:

 Pichia Versus Saccharomyces Table

Eu chamei de “eficiência de códons” o quão os códons de Pichia funcionam em Saccharomyces, tomando como “códons incompatíveis” aqueles com diferença de no mínimo 4 entre as frequências de códon em cada espécie (a marcação em amarelo na imagem de comparação das frequências) – também estou tomando como hipótese que há uma relação direta entre frequência de códon e a preferência do mesmo por determinada espécie. Cheguei nesses valores através da porcentagem do número de códons “compatíveis” (totais –  incompatíveis). De 20 aminoácidos possíveis, apenas 7 seriam seus códons prontamente compatíveis.

Ambas as espécies são leveduras, e por isso eu esperava uma maior compatibilidade natural. O problema é que eu não tenho um controle para saber se a usagem de códons de cada levedura é realmente discrepante. Por isso, fiz a mesma comparação entre Pichia e E.coli. Como esses organismos são bem mais diferentes (um é eucarioto e outro procarioto), esperei uma diferença bem maior. (veja imagem abaixo)

Comparação Pichia e Ecoli - códons
Texto em vermelho: Pichia. Texto em Verde: E.coli. Laranja – diferença de 4 a 5; Rosa – diferença de 6 a 9; Amarelo – diferença acima de 10; Códons circulados – frequências iguais.

Legenda: Laranja – diferença de 4 a 5; Rosa – diferença de 6 a 9; Amarelo – diferença acima de 10; Códons circulados – frequências iguais.

Como esperado, dá pra ver claramente o quanto E.coli e Pichia são diferentes em comparação com Pichia e Sccharomyces. Nesse panorama, eu diria em Pichia e Saccharomyces são bem parecidas. Quanto mais comparações forem feitas mais certeza se terá do quão um organismo se parece com outro.

Otimização de Códons

Apesar de eu não ter certeza da relação direta entre frequência e preferência de códon, consegui observar coisas muito interessantes: a única inviabilidade de tradução correta entre Pichia e Saccharomyces de aminoácido é o Glutamato, em que as frequências de todas as possibilidades de códons não entram na minha classificação de “códons compatíveis” (diferença de frequência menor que 3). O resto dos códons podem ser compatibilizados entre espécies usando-se versões alternativas de códon para um mesmo aminoácio! 🙂

Quando se otimizam códons para deixar um plasmídeo compatível em diferentes plataformas, faz-se exatamente isso. O problema é que mesmo assim a expressão ainda não é ótima, então em geral prefere-se “sacrificar” a compatibilidade do plasmídeo em diferentes espécies para se ter um plasmídeo com os melhores códons em cada bichinho.

Existem vários programas que fazer essa otimização de códons rapidamente, mas em geral as empresas que sintetizam DNA já incluem isso (de graça ou não) no planejamento do plasmídeo a ser sintetizado.

Conclusão

Por fim, a conclusão que tirei disso tudo é: eu ACHO que um gene de Pichia funcionaria suficientemente bem em Saccharomyes e vice-versa. No caso de não conseguirmos sintetizar os genes que precisamos já códon-atimizados, talvez valha a pena fazer uma mistureba de DNA interespécies – mas só para as leveduras!